Why You Should Treat Your Customers Like Numbers
There was a story out this week on social media that
attempted to draw a correlation between U.S. Olympic athletes failing to medal
and the athletes bib number in competitions where bibs are required. Basically, the argument was that athletes
wearing the number “4” were highly likely not to win the competition. The inference
being that this was due to the number “4” being an unlucky number in Korea as the
number “13” is in the U.S. The reality
is, however, that it is not a coincidence at all, nor is there a supernatural force
at play. The fact is that bib numbers,
or starting orders, are assigned based on performance in past events. In other words, a competitor wearing the
number “4” is, on average, expected to be the fourth best competitor in the
competition. Therefore, it would not be
entirely surprising if they finished off the podium which recognizes only the
top three competitors in each event.
As these athletes probably resent their starting placement, understanding
the advantages of starting order and their sense that they can perform better
than their past performance may indicate, consumers often resent being treated
like a number, as well, because they do not like being fit into a box with
other consumers. However, if properly
used, numbers, or more precisely, statistics, can provide for a better customer
experience rather than the opposite.
Unfortunately, many businesses attempt to forecast using acquired data
without properly interpreting the results.
This can provide for a less than favorable customer experience.
Let’s say that your business produces blue and red
widgets. You want to determine how many
of each you should produce, so you conduct an online survey of your customers
which results in a 50/50 tie. The
current state of the market informs you that 50% of your customers prefer red
widgets and 50% prefer blue. As a result,
you set up a production plan to allocate production, 50/50 by color. When the widgets are distributed, however,
you find that you have a surplus of blue widgets and a shortage of red widgets. How did that happen?
It happened because you may have misinterpreted the results
of your survey. Perhaps it is that you put too much value into
the results of that one survey. What if you
had taken the same survey a month before and demand for blue widgets was at 75%
and demand for red widgets was at 25%.
Then, when you took the most recent survey you would have realized a
shift in sentiment, where demand for red widgets was on the rise. Had you had this trended data, you would have
predicted that you would need to produce more red widgets than blue widgets to
meet future
demand.
While this example may seem simplistic, I recently worked
with a client who provided me with statistics on client engagement channels,
branch, internet, phone, etc. The
discussion we were having was about where the organization would get the
greatest results from process and technology improvements. At the time, the organization was receiving
the majority of their customer contact by phone, which seemed odd to me, but we
discussed why that might be. Come to
find out it was because their website was a communications blackhole. Their customers figured out that they got
better service from just making a call, rather than trying to use the website.
So, if we just used the raw statistics to determine where to
apply resources, the argument could be made that the organization should invest
in its telephone equipment and training call center staff. But, the reality is that the statistics didn’t
necessarily demonstrate a customer preference, only a customer reality. This is why trained data scientists who know
your business and understand your data are critical to sound business intelligence. The term Data Scientist is not just a new term
for database administrator; it signifies a person who understands technology,
mathematics and, most importantly, your business. If you have questions about improving your organization’s
business intelligence by engaging qualified data scientists, contact us at ds@cubi.pro or visit our website at cubi.pro.
Comments
Post a Comment